Ontology-based Top-N Recommendations on New Items with Matrix Factorization

نویسندگان

  • Haomin Cui
  • Ming Zhu
  • Shijia Yao
چکیده

Collaborative Filter is proved to be effective in recommendations and widely used in the recommender system for online stores. The mechanism of this method is to find similarities among users in rating score. The item can be recommended based on the similar user’s choice. The calculation of user similarities is based on distance metrics and vector similarity measures. However, the effect of CF methods is limited by several problems, such as the new item problem and how to recommend the items in the long-tail. The data sparsity, which means fewer scores in user rating matrix, can lead to difficulties in finding a relationship among users for recommendations. It is particularly important to design new similarity metrics which is based on the inherent relationship between items rather than rating score by users. In this paper, we introduce an approach using ontology-based similarity to estimate missing values in the user rating matrix. To accommodate different features of items, we investigate several kinds of metrics to estimate the similarity of item ontology, such as Tversky’s similarity, Spearman’s rank correlation coefficient, and Latent Dirichlet Allocation. The missing rating score was filled by the mechanism based on the similarity of the item ontology. With the new rating matrix, the original CF method could get better performance in recall. Experiments using Hetrec’11 dataset were carried out to evaluate the proposed methods using Top-N recall metrics. The results show the effect of the proposed method compared with state-of-the-art approaches when applied to new item cold start and long-tail situations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A social recommender system based on matrix factorization considering dynamics of user preferences

With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...

متن کامل

SimDex: Exploiting Model Similarity in Exact Matrix Factorization Recommendations

We present SIMDEX, a new technique for serving exact top-K recommendations on matrix factorization models that measures and optimizes for the similarity between users in the model. Previous serving techniques presume a high degree of similarity (e.g., L2 or cosine distance) among users and/or items in MF models; however, as we demonstrate, the most accurate models are not guaranteed to exhibit ...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Assessing Impacts of a Power User Attack on a Matrix Factorization Collaborative Recommender System

Collaborative Filtering (CF) Recommender Systems (RSs) help users deal with the information overload they face when browsing, searching, or shopping for products and services. Power users are those individuals that are able to exert substantial influence over the recommendations made to other users, and RS operators encourage the existence of power user communities and leverage them to help fel...

متن کامل

Beyond Globally Optimal: Focused Learning for Improved Recommendations

When building a recommender system, how can we ensure that all items are modeled well? Classically, recommender systems are built, optimized, and tuned to improve a global prediction objective, such as root mean squared error. However, as we demonstrate, these recommender systems often leave many items badly-modeled and thus under-served. Further, we give both empirical and theoretical evidence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JSW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014